A Joint Sentiment-Target-Stance Model for Stance Classification in Tweets
نویسندگان
چکیده
Classifying the stance expressed in online microblogging social media is an emerging problem in opinion mining. We propose a probabilistic approach to stance classification in tweets, which models stance, target of stance, and sentiment of tweet, jointly. Instead of simply conjoining the sentiment or target variables as extra variables to the feature space, we use a novel formulation to incorporate three-way interactions among sentiment-stance-input variables and three-way interactions among target-stance-input variables. The proposed specification intuitively aims to discriminate sentiment features from target features for stance classification. In addition, regularizing a single stance classifier, which handles all targets, acts as a soft weight-sharing among them. We demonstrate that discriminative training of this model achieves the state-of-the-art results in supervised stance classification, and its generative training obtains competitive results in the weakly supervised setting.
منابع مشابه
Stance Detection on Tweets: An SVM-based Approach
Stance detection is a subproblem of sentiment analysis where the stance of the author of a piece of natural language text for a particular target (either explicitly stated in the text or not) is explored. The stance output is usually given as Favor, Against, or Neither. In this paper, we target at stance detection on sports-related tweets and present the performance results of our SVM-based sta...
متن کاملDetecting Stance in Tweets And Analyzing its Interaction with Sentiment
One may express favor (or disfavor) towards a target by using positive or negative language. Here for the first time we present a dataset of tweets annotated for whether the tweeter is in favor of or against pre-chosen targets, as well as for sentiment. These targets may or may not be referred to in the tweets, and they may or may not be the target of opinion in the tweets. We develop a simple ...
متن کاملJoint Named Entity Recognition and Stance Detection in Tweets
Named entity recognition (NER) is a well-established task of information extraction which has been studied for decades. More recently, studies reporting NER experiments on social media texts have emerged. On the other hand, stance detection is a considerably new research topic usually considered within the scope of sentiment analysis. Stance detection studies are mostly applied to texts of onli...
متن کاملTwitter Stance Detection - A Subjectivity and Sentiment Polarity Inspired Two-Phase Approach
The problem of stance detection from Twitter tweets, has recently gained significant research attention. This paper addresses the problem of detecting the stance of given tweets, with respect to given topics, from user-generated text (tweets). We use the SemEval 2016 stance detection task dataset. The labels comprise of positive, negative and neutral stances, with respect to given topics. We de...
متن کاملA Dataset for Detecting Stance in Tweets
We can often detect from a person’s utterances whether he/she is in favor of or against a given target entity (a product, topic, another person, etc.). Here for the first time we present a dataset of tweets annotated for whether the tweeter is in favor of or against pre-chosen targets of interest—their stance. The targets of interest may or may not be referred to in the tweets, and they may or ...
متن کامل